

FLUID PROPERTIES

3. Variation of viscosity with temperature for liquids

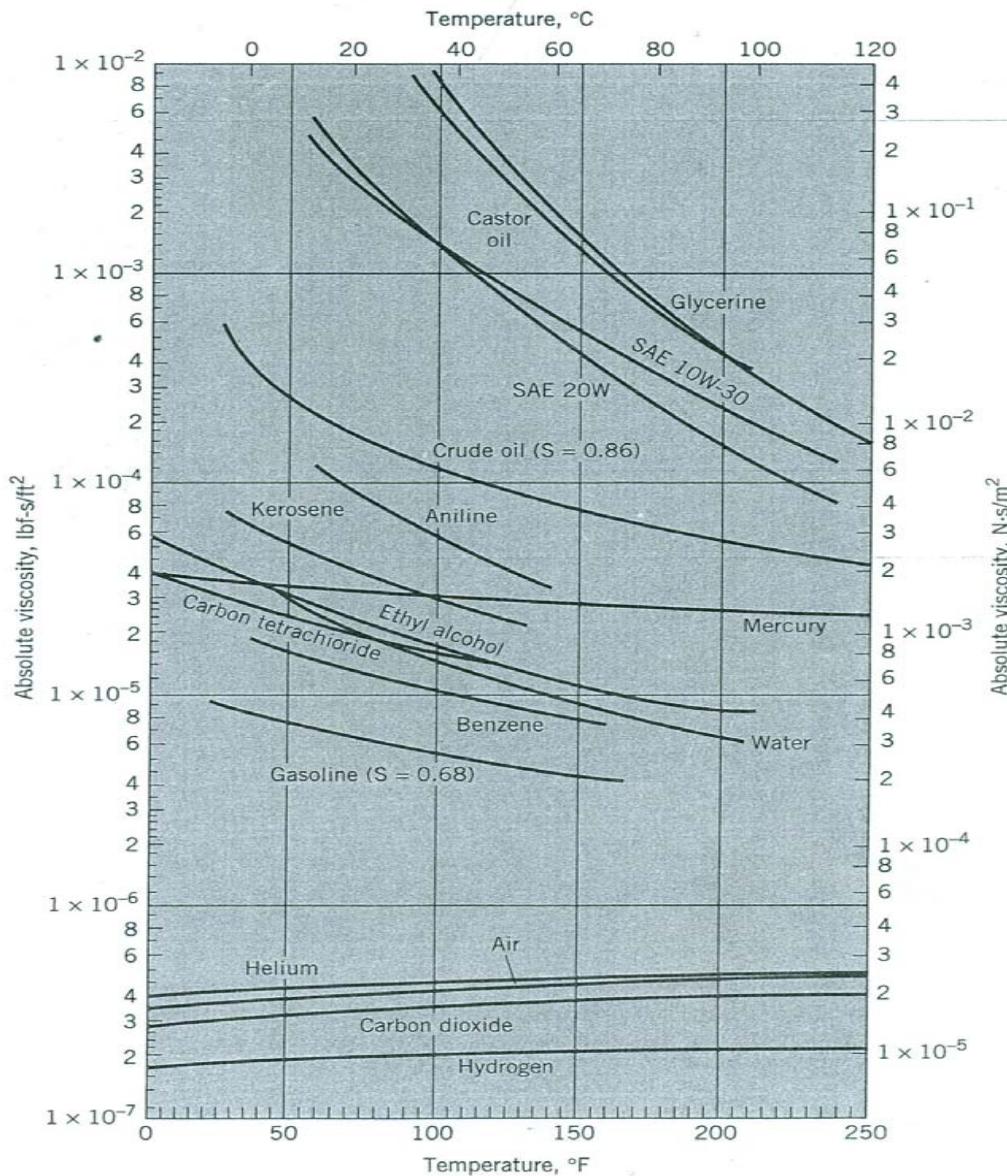
$$\mu = Ce^{b/T}$$

The variation of Dynamic Viscosity for fluids with temperature is given in (Fig. A.2) in the Appendix of the text book.

Figure (A-2) on Page (A-9)

FIGURE A.2

Absolute viscosities of certain gases and liquids
[Adapted from Fluid Mechanics, 5th ed., by V. L. Streeter. Copyright © 1971, McGraw-Hill Book Company, New York. Used with permission of the McGraw-Hill Book Company.]



FLUID PROPERTIES

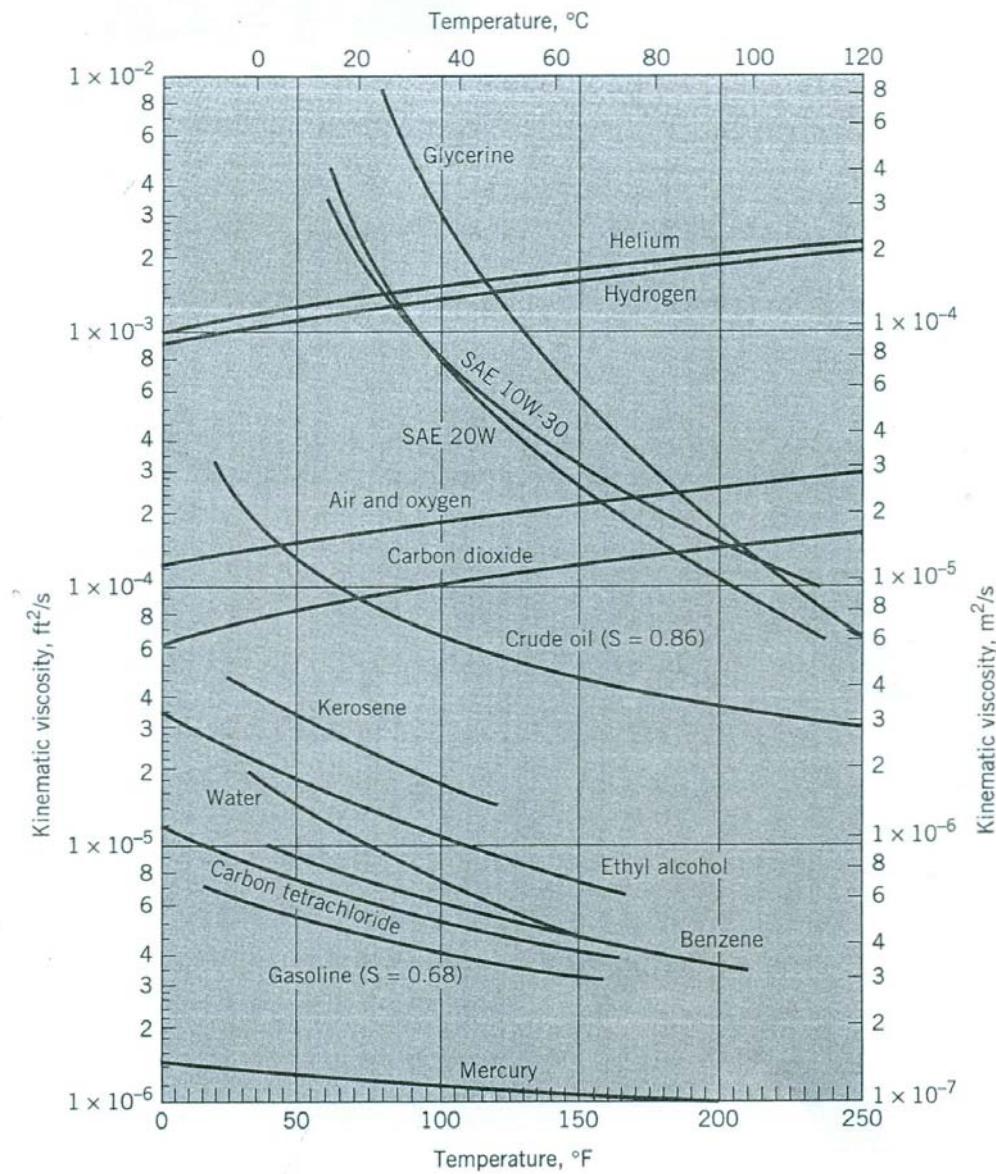
The variation of *Kinematic Viscosity* for fluids with temperature is given in (Fig. A.3) in the Appendix of the text book.

Figure (A-3) on Page (A-10)

FIGURE A.3

Kinematic viscosities of certain gases and liquids. The gases are at standard pressure. [Adapted from Fluid Mechanics, 5th ed., by V. L. Streeter. Copyright © 1971, McGraw-Hill Book Company, New York. Used with permission of the McGraw-Hill Book Company.]

Company.]



Example (2-3)

The dynamic viscosity of water at 20°C is $1.00 \times 10^{-3} \text{ N} \cdot \text{s}/\text{m}^2$, and the viscosity at 40°C is $6.53 \times 10^{-4} \text{ N} \cdot \text{s}/\text{m}^2$. Using Eq. (2.8), estimate the viscosity at 30°C .

Solution Taking the logarithm of Eq. (2.8) gives

$$\mu = Ce^{b/T} \quad \ln \mu = \ln C + b/T$$

Substituting in the data for μ and T at the two data points, we get

$$-6.908 = \ln C + 0.00341b$$

$$-7.334 = \ln C + 0.00319b$$

Solving for $\ln C$ and b gives

$$\ln C = -13.51 \quad b = 1936 \text{ (K)}$$

Substituting back into Eq. (2.8) results in

$$\mu = 1.357 \times 10^{-6} e^{1936/T}$$

Evaluating for the viscosity at 30°C gives

$$\mu = 8.08 \times 10^{-4} \text{ N} \cdot \text{s}/\text{m}^2$$

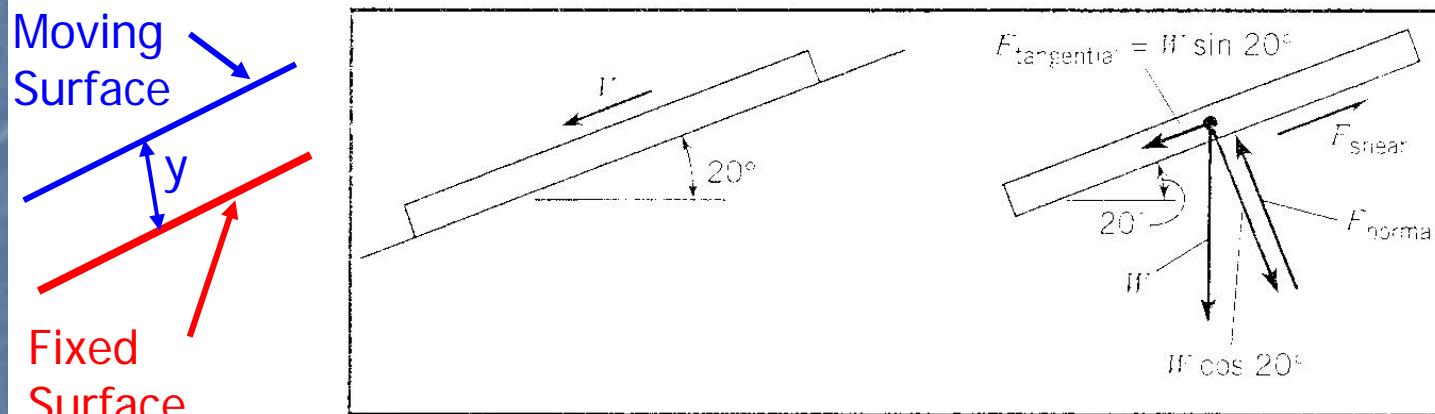
△

This value differs by 1% from the reported value but provides a much better estimate than would be obtained using a linear interpolation.

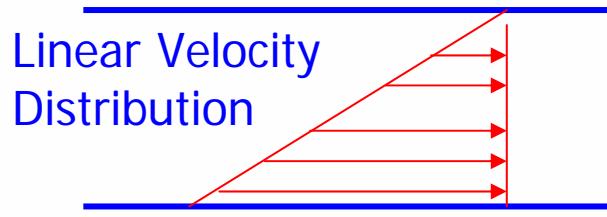
Example (2-4)

A board 1 m by 1 m that weighs 25 N slides down an inclined ramp (slope = 20°) with a velocity of 2.0 cm/s. The board is separated from the ramp by a thin film of oil with a viscosity of $0.05 \text{ N} \cdot \text{s/m}^2$. Neglecting edge effects, calculate the spacing between the board and the ramp.

Solution The board and ramp (left) and a free body of the board (right) are shown below. For a constant sliding velocity, the resisting shear force is equal to the component of weight parallel to the inclined ramp. Therefore,



Example (2-4)



Linear Velocity Distribution

$$F_{\text{tangential}} = F_{\text{shear}}$$

$$W \sin 20^\circ = \tau A$$

$$W \sin 20^\circ = \mu \frac{dV}{dy} A$$

In this case we can assume a linear velocity distribution in the oil, so dV/dy can be expressed as $\Delta V/\Delta y$, where ΔV is the velocity of the board and Δy is the spacing between the board and the ramp. We then have

$$W \sin 20^\circ = \mu \frac{\Delta V}{\Delta y} A$$

or

$$\begin{aligned}\Delta y &= \frac{\mu \Delta V A}{W \sin 20^\circ} \\ &= \frac{0.05 \text{ N} \cdot \text{s/m}^2 \times 0.020 \text{ m/s} \times 1 \text{ m}^2}{25 \text{ N} \times \sin 20^\circ} \\ &= 0.000117 \text{ m} \\ &= 0.117 \text{ mm}\end{aligned}$$

Δ

FLUID PROPERTIES

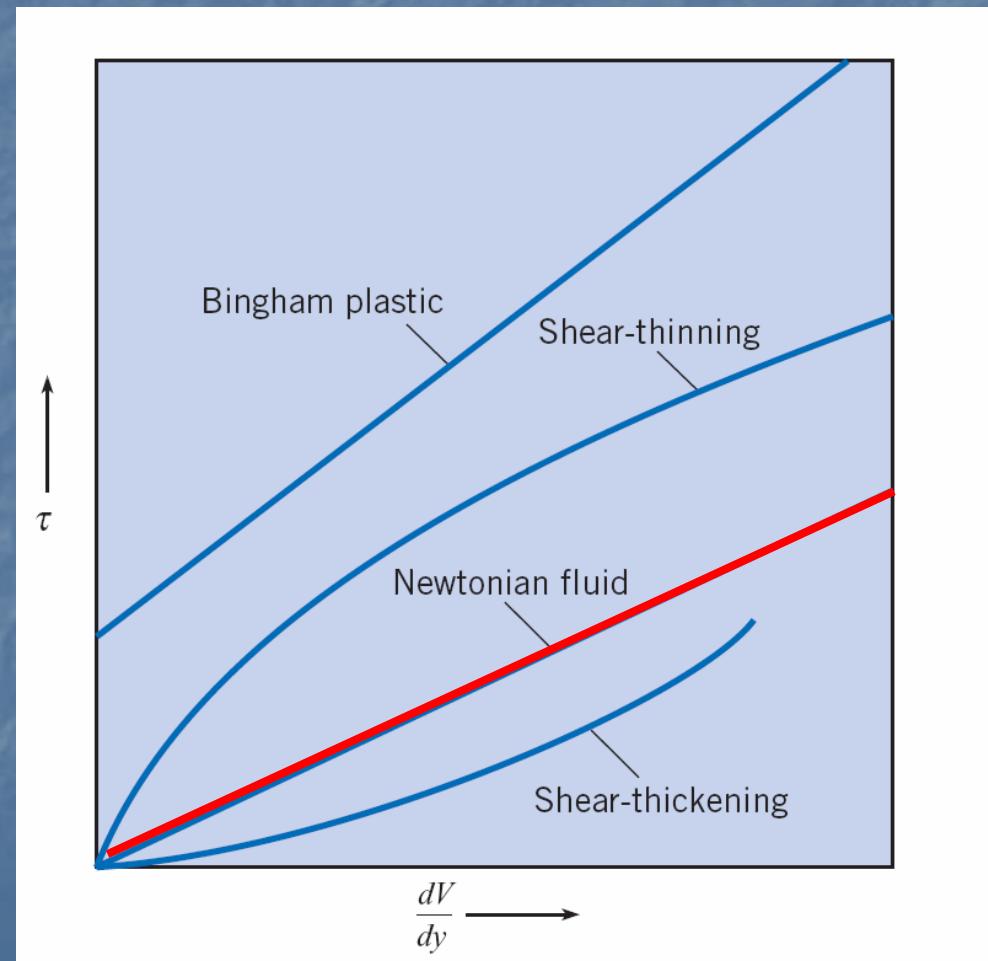
Newtonian and Non-Newtonian Fluids

Newtonian fluids are identified

when only

$$\tau \propto \left(\frac{dV}{dy} \right)$$

- Shear Thinning: (paints, printer ink)
- Shear thickening: (gypsum-water mixture)



END of
Lecture (4)